781 research outputs found

    TIPPtool: Compositional Specification and Analysis of Markovian Performance Models

    Get PDF
    In this short paper we briefly describe a tool which is based on a Markovian stochastic process algebra. The tool offers both model specification and quantitative model analysis in a compositional fashion, wrapped in a userfriendly graphical front-end

    A tool for model-checking Markov chains

    Get PDF
    Markov chains are widely used in the context of the performance and reliability modeling of various systems. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both discrete [34, 10] and continuous time settings [7, 12]. In this paper, we describe a prototype model checker for discrete and continuous-time Markov chains, the Erlangen-Twente Markov Chain Checker EƎMC2, where properties are expressed in appropriate extensions of CTL. We illustrate the general benefits of this approach and discuss the structure of the tool. Furthermore, we report on successful applications of the tool to some examples, highlighting lessons learned during the development and application of EƎMC2

    A model checker for performance and dependability properties

    Get PDF
    Markov chains are widely used in the context of performance and reliability evaluation of systems of various nature. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both the discrete [8] and the continuous time setting [1], [3]. In this short paper, we describe the prototype model checker EāŠ¢MC2E \vdash M C^2 for discrete and continuous-time Markov chains, where properties are expressed in appropriate extensions of CTL.We illustrate the general benefits of this approach and discuss the structure of the tool

    A Markov Chain Model Checker

    Get PDF
    Markov chains are widely used in the context of performance and reliability evaluation of systems of various nature. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both the discrete [17,6] and the continuous time setting [4,8]. In this paper, we describe a prototype model checker for discrete and continuous-time Markov chains, the Erlangen Twente Markov Chain Checker (EāŠ¢MC2(E \vdash MC^2), where properties are expressed in appropriate extensions of CTL. We illustrate the general bene ts of this approach and discuss the structure of the tool. Furthermore we report on first successful applications of the tool to non-trivial examples, highlighting lessons learned during development and application of (EāŠ¢MC2(E \vdash MC^2)

    Lattice Properties of PbX (X = S, Se, Te): Experimental Studies and ab initio Calculations Including Spin-Orbit Effects

    Full text link
    During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.Comment: 25 pages, 12 Figures, 1 table, submitted to PR

    Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Get PDF
    Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers

    Vibrational and Thermal Properties of ZnX (X=Se, Te): Density Functional Theory (LDA and GGA) versus Experiment

    Full text link
    We calculated the phonon dispersion relations of ZnX (X=Se, Te) employing ab initio techniques. These relations have been used to evaluate the temperature dependence of the respective specific heats of crystals with varied isotopic compositions. These results have been compared with mea- surements performed on crystals down to 2 K. The calculated and measured data are generally in excellent agreement with each other. Trends in the phonon dispersion relations and the correspond- ing densities of states for the zinc chalcogenide series of zincblende-type materials are discussed.Comment: 10 pages, submitted to PR

    Electronic and phononic properties of the chalcopyrite CuGaS2

    Full text link
    The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of CuGa2, a canonical ternary semiconductor of the chalcopyrite family. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume thermal expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation and the results are compared with data obtained on samples with the natural isotope composition for Cu, Ga and S, as well as for isotope enriched samples.Comment: 9 pages, 8 Figures, submitted to Phys. Rev

    Electronic and phononic properties of cinnabar: ab initio calculations and some experimental results

    Full text link
    We report ab initio calculations of the electronic band structure, the corresponding optical spectra, and the phonon dispersion relations of trigonal alpha-HgS (cinnabar). The calculated dielectric functions are compared with unpublished optical measurements by Zallen and coworkers. The phonon dispersion relations are used to calculate the temperature and isotopic mass dependence of the specific heat which has been compared with experimental data obtained on samples with the natural isotope abundances of the elements Hg and S (natural minerals and vapor phase grown samples) and on samples prepared from isotope enriched elements by vapor phase transport. Comparison of the calculated vibrational frequencies with Raman and ir data is also presented. Contrary to the case of cubic beta-HgS (metacinnabar), the spin-orbit splitting of the top valence bands at the Gamma-point of the Brillouin zone (Delta_0) is positive, because of a smaller admixture of 5d core electrons of Hg. Calculations of the lattice parameters, and the pressure dependence of Delta_0 and the corresponding direct gap E_0~2eV are also presented. The lowest absorption edge is confirmed to be indirect.Comment: 13 pages, 15 figure
    • ā€¦
    corecore